#### Wyckoff Eagle Harbor Site





**Community Interest Group Meeting** 

May 6, 2014



## Meeting Agenda

#### Status Update on Site Management

Discussion and informal input from CIG members

#### Coordination between Upland and Offshore

- EPA presentation
- Discussion and informal input from CIG members

Status of Alternatives Evaluation

Questions and informal input from audience members

#### Next Steps, Upcoming Meetings

- Community Interest Group Meeting #4 (Sept 10, 2014)
- EPA informal public meeting #2 (anticipated August 2014

# Coordination of Upland and In-Water Activities

- Cleanup planning for OU1 Focused Feasibility
   Study Area concurrent with upland process
- Upland and offshore areas separate but coordinated
  - Complimentary Remedial Action Objectives
  - Construction sequencing / timing
- Proposed plan, when released for public comment, will cover both areas

## OU1 Focused Feasibility Study Area



## Why just these areas?

- North Shoal and East Beach have never been cleaned up
- Other offshore areas already capped:
  - Phase I 54 acres, 1993/94
  - Phase II 14 acres, 2001
  - West Beach Exposure Barrier System and subtidal cap extension – 2008
- EPA continuing to monitor the performance of these caps, maintenance planned for 2015



#### OU1 FFS Process to Date

- TarGOST investigation of beaches 2012
- \* Field Data report 2013
- \* Revised Conceptual Site Model 2013
- Screening of remedial technologies 2013
- Development of RAOs 2014

\* Available on EPA web site

## In the meantime ...



# Status of Upland Cleanup Alternatives Analysis

# Performance Objectives to be taken into consideration by Cleanup Alternative Analysis

- 1. Remove or treat mobile creosote in the upper aquifer to the maximum extent practicable such that migration and leaching of contaminants is significantly reduced.
- 2. Carry out a cleanup action that does not require long-term active hydraulic control as a part of O&M following implementation of source removal.

# Development of Cleanup Alternatives

- Technologies have been combined into sets of cleanup alternatives. Containment alternative is also be considered.
- Alternatives to be considered will be protective of human health and the environment and will meet regulatory standards.
- Alternatives will be evaluated for their ability to reduce toxicity, mobility, or volume; effectiveness (short term & long term); implementability and cost.
- Implementability includes evaluation of duration, noise, odor, traffic, etc.

# Superfund 9 Criteria for Evaluation of Cleanup Alternatives

- Threshold Criteria
  - 1. Protection of human health and the environment
  - 2. Ability to meet applicable or relevant and appropriate requirements (e.g. regulations such as MTCA)
- In order for an alternative to be carried forward to the detailed analysis, the alternative must meet the threshold criteria.

# Superfund 9 Criteria for Evaluation of Cleanup Alternatives

- Primary Balancing Criteria
  - 3. Long-term effectiveness and permanence
  - 4. Reduction of toxicity, mobility or volume through treatment
  - 5. Short-term effectiveness
  - 6. Implementability
  - 7. Cost
- The focused feasibility study evaluates the cleanup alternatives against these criteria.
- Ability of each cleanup alternative to meet the performance objectives will be evaluated under criteria 3 and 4.

# Superfund 9 Criteria for Evaluation of Cleanup Alternatives

- Modifying criteria
  - 8. State/Support agency acceptance
  - 9. Community acceptance
- These criteria are assessed formality after the public comment period on the Proposed Plan.

## Technologies Evaluated

- Thermal Enhanced Extraction
  - Belowground Steam Injection
- Medium Temperature Thermal Desorption (MTTD)
  - Aboveground heating ~ 1000°F
- In Situ Soil Stabilization (ISS)
  - · Belowground mixing with Portland cement mixture
- In Situ Chemical Oxidation (ISCO)
  - Belowground mixing with H<sub>2</sub>O<sub>2</sub> or permanganate
- Enhanced Aerobic Degradation (EAB)
  - Belowground injection of air
- Passive Groundwater Treatment

## Alternatives Being Evaluated

- No action
- Containment
- ISS followed by passive groundwater treatment
- Steam Extraction/Treatment with In-Situ Chemical Oxidation followed by EAB
- Steam Extraction/Treatment with Medium Temperature Thermal Desorption followed by EAB

# Common Elements for Most Cleanup Alternatives

- Access Improvements
- Demolition/Decontamination/Disposal/Reuse of existing structures (footings/foundations)
- Propane system/energy evaluation
- Surface cap
- Monitored Natural Attenuation (after active treatment/removal)
- Passive groundwater treatment
- Shoreline enhancements (sheet pile wall)

#### Thermal Enhanced Extraction

- Steam is injected into the subsurface to heat the creosote in order to make it easier to extract.
- Extracted creosote is treated using enhanced/expanded existing groundwater treatment plant.



#### In-Situ Chemical Oxidation

- Injection of chemicals ("oxidants") to reduce the toxicity of the creosote compounds.
- Being evaluated as a follow on step to thermal treatment to treat the deeper zones near the wall.
- Chemicals being evaluated include hydrogen peroxide and sodium permanganate.



O - HYDROGEN PEROXIDE INJECTION WELLS



**ISCO - PERMANGANATE INJECTION WELLS** 

LEGEND

REENED REPRESENTS
L CONDITIONS WILL DEPEND
ONE AS PART OF
UP FOR DEMOCITION

© 1131 Ø<sup>189</sup> Ø<sub>742</sub> EXISTING SHEET PILE VAPOR COVER LIMITS SHEET PILE WALLS

STEAM INJECTION WELL HDROGEN PEROXIDE WELL PERMANGANATE WELL

EXTRACTION WELL

D FOR DETAILS, DE WELLHEAD TE INJECTION, LS.



#### **Enhanced Aerobic Biodegradation**

- Follow-on technology to be implemented after thermal remedy is completed in order to take advantage of high subsurface temperatures.
- Injection of air to promote biological growth and breakdown of residual creosote product.



# Medium Temperature Thermal Desorption

- "Ex-situ" = Creosote-contaminated soil is excavated prior to treatment.
- Excavated soil is treated on site in a boiler.
- Air emissions are controlled/treated as part of the process.
- Treated clean soil is placed back in the excavation.



#### In Situ Stabilization

- Inject Portland Cement mixture below ground to form a concrete column to immobilize the creosote product
- Use Jet Grouting for deeper contaminated areas
- Post-Initial Source Reduction (if needed) –
   The site will be treated by air injection, O<sub>2</sub> injection, or *In Situ* Chemical Oxidation

### ISS Equipment











TarGOST REFUSAL DEPTH

#### Remedial Action Objectives

- These are the objectives that the final cleanup remedy will meet once it's completed.
- 1. Prevent risk to human health and the environment from direct contact with contaminated surface soils.
  - This objective will be met when contaminated soil has either been removed or capped.
- ▶ 2. Prevent further degradation in lower aquifer groundwater and restore that portion of the aquifer beyond the influence of saltwater intrusion to MCLs within a reasonable timeframe.
- ▶ 3. That portion of the lower aquifer that is influenced by saltwater intrusion shall be protective of discharge to surface waters in Eagle Harbor and Puget Sound.

# Next steps for both Upland and Beaches

- Draft Focused Feasibility Studies June 2014
- EPA Remedy Review Board July 2014
- Proposed Plan available for public review and comment Fall 2014
  - Notice in newspaper
  - Formal public meeting(s)
  - Opportunity for verbal and written comment
- Record of Decision Summer 2015

# Resources for finding out more about technologies

- http://www.clu-in.org/remediation/ (Cleanup Information - EPA)
- http://www.itrcweb.org/Guidance
   (Interstate Technology & Regulatory Council)